

Departamento de Matemáticas Facultad de Ciencias Naturales

Recinto de Río Piedras

 $_{\rm 3151}^{\rm MaTE}$

Segundo Examen

8 de noviembre de 2019

	Nombre:		
No. de	e estudiante:	Profesor:	Sección:
Inst	rucciones		
Las re	glas para esta prueba son las	s siguientes:	
			problemas) y otra de respuesta libre ay que contestar todas las preguntas.
2. 1	Para obtener crédito en los e	jercicios de respuesta libre, debe mo	strar todo su trabajo.
3. I	NO SE PERMITE EL USO	DE CELULARES.	
4. I	NO SE PERMITE EL USO	DE CALCULADORAS.	
	NO SE PERMITE EL USO D INTERRUMPIR A SUS COI		IPADS, IPODS, ETC.) QUE PUEDAN
Со	mo prueba de que usted ha l	eído y entendido las instrucciones, f	avor de firmar en la caja de abajo.
	Firma:		

Página	Puntos posibles	Puntuación obtenida
2	9	
3	9	
4	9	
5	9	
6	9	
7	23	
8	22	
9	20	
Total:	110	

Parte I. Selección Múltiple

- 1. (3 puntos) Encuentre la pendiente de la curva dada por la relación $xy^4 = 160$ en el punto (10,2).
 - A. $+\frac{1}{20}$
 - B. $-\frac{1}{20}$
 - C. +16
 - D. -16
 - E. Todas las anteriores.
 - F. Ninguna de las anteriores.

- 2. (3 puntos) La posición de un objeto moviéndose sobre una recta está dada por $s(t) = t^2 50t + 35$, donde s está dado en metros y t está dado en segundos. ¿Cuándo, si alguna vez, durante el intervalo de tiempo $0 \le t \le 40$ el objeto cambia de dirección?
 - A. t = 5 seg.
 - B. t = 10 seg.
 - C. t = 15 seg.

- D. t = 25 seg.
- E. Nunca cambia de dirección.
- F. Ninguna de las anteriores.

- 3. (3 puntos) Dado que $f(x) = 3x^2 + 2x 10$ y que $x_0 = 0$. Utilice el método de Newton para aproximar las raíces de f(x) = 0 hasta encontrar el segundo estimado x_2 .
 - A. $x_2 = \frac{105}{32}$
 - B. $x_2 = \frac{85}{32}$ C. $x_2 = \frac{75}{32}$

- D. $x_2 = \frac{55}{28}$
- E. Todas las anteriores.
- F. Ninguna de las anteriores.

4. (3 puntos) Dada la función $f(x) = 4x + \frac{20}{x}$ definida en el intervalo [1, 10]. Encuentre todos los valores c en el intervalo (1, 10) tales que

$$f'(c) = \frac{f(10) - f(1)}{10 - 1}.$$

A.
$$c = +\sqrt{5}$$

C.
$$c = +\sqrt{10}$$

E. Todas las anteriores.

- B. $c = -\sqrt{5}$
- D. $c = -\sqrt{10}$

F. Ninguna de las anteriores.

- 5. (3 puntos) Considere la función $g(x) = x^2 12x + 30$ definida en el intervalo [-1,7]. Encuentre, si alguno, los máximos y mínimos absolutos de g en el intervalo dado.
 - A. el máximo absoluto es 43 en x = -1; el mínimo absoluto es -5 en x = 7
 - B. el máximo absoluto es 43 en x = -1; el mínimo absoluto es -6 en x = 6
 - C. el máximo absoluto es 30 en x = 0; el mínimo absoluto es -5 en x = 7
 - D. el máximo absoluto es 30 en x=0; el mínimo absoluto es -10 en x=3
 - E. Todas las anteriores.
 - F. Ninguna de las anteriores.

6. (3 puntos) Encuentre y' dado que $y = \ln(x^2 + 100)$.

A.
$$y' = \frac{1}{x} \cdot 2x$$

B.
$$y' = (x^2 + 100)^2$$

C.
$$y' = \frac{1}{x^2 + 100}$$

D.
$$y' = \frac{2x}{x^2 + 100}$$

- E. Todas las anteriores.
- F. Ninguna de las anteriores.

7. (3 puntos) Encuentre, en la forma y = mx + b, la ecuación de la recta tangente a la gráfica de $y = 3x^2 + 2x - 10$, en el punto (1, -5).

A.
$$y = -8x + 3$$

D.
$$y = -6x + 1$$

B.
$$y = 8x - 13$$

C.
$$y = 6x - 11$$

F. Ninguna de las anteriores.

8. (3 puntos) La derivada de cierta función f(x) es f'(x) = (x+1)(x-3)(x-5). Encuentre los valores de x en donde la función f(x) alcanza valores máximos locales.

A.
$$x = 3$$

B.
$$x = 5$$

C.
$$x = -1$$

D.
$$x = -1, 5$$

E.
$$x = -1, 3, 5$$

F. Ninguna de las anteriores.

- 9. (3 puntos) El producto de dos números reales no-negativos es 360. ¿Cuáles son esos dos números si la suma del <u>triple</u> de uno de ellos con el <u>doble</u> del otro es mínima?
 - A. Los números son: 10,36
 - B. Los números son: $5\sqrt{12}$, $6\sqrt{12}$
 - C. Los números son: $4\sqrt{15}$, $6\sqrt{15}$
 - D. Los números son: $4\sqrt{18}$, $5\sqrt{18}$
 - E. Todas las anteriores.
 - F. Ninguna de las anteriores.

10. (3 puntos) Encuentre
$$\frac{dr}{d\theta}$$
 dado que $r = 10 \tan(3\theta) + \theta$.

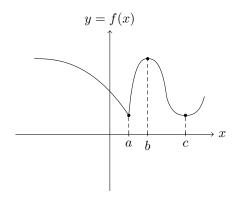
A.
$$\frac{dr}{d\theta} = 10 \sec^2(3\theta)$$

C.
$$\frac{dr}{d\theta} = 30 \sec^2(3\theta)$$

A.
$$\frac{dr}{d\theta} = 10 \sec^2(3\theta)$$
 C. $\frac{dr}{d\theta} = 30 \sec^2(3\theta)$
B. $\frac{dr}{d\theta} = 10 \sec^2(3\theta) + 1$ D. $\frac{dr}{d\theta} = 30 \sec^2(3\theta) + 1$

D.
$$\frac{dr}{d\theta} = 30\sec^2(3\theta) + 1$$

11. (3 puntos) La función $s(t) = 5t^2 - 15t + 35$ definida en el intervalo $0 \le t \le 5$, nos da la posición de un objeto moviéndose horizontalmente, donde s está dado en metros y t está dado en segundos. Encuentre la velocidad v(t) y la aceleración a(t) instantáneas del objeto cuando t=3.

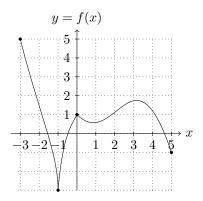

A.
$$v(3) = 10 \text{ m/seg}$$
; $a(3) = 15 \text{ m/seg}^2$

D.
$$v(3) = -15 \text{ m/seg}$$
; $a(3) = -32 \text{ m/seg}^2$

B.
$$v(3) = 15 \text{ m/seg}$$
; $a(3) = 10 \text{ m/seg}^2$

C.
$$v(3) = -15 \text{ m/seg}$$
; $a(3) = 10 \text{ m/seg}^2$

- F. Ninguna de las anteriores.
- 12. (3 puntos) Encuentre la tabla que mejor describe la gráfica a continuación.



	x	f'(x)
Λ	a	no existe
А.	b	0
	c	no existe

	\boldsymbol{x}	f'(x)
C	a	no existe
C .	\boldsymbol{b}	0
	c	0

B.
$$\begin{array}{c|cc}
x & f'(x) \\
a & 0 \\
b & \text{no existe} \\
c & 0
\end{array}$$

13. (3 puntos) Considere la siguiente gráfica de y=f(x), donde $-3 \le x \le 5$. Indique los valores de x en donde la función alcanza un mínimo <u>absoluto</u>, si alguno.

A.
$$x = -3$$

B.
$$x = -1$$

C.
$$x = 0$$

D.
$$x = +5$$

- F. No hay mínimo absoluto.
- 14. (3 puntos) Suponga que f, g son diferenciables para todo número real, que f(7) = 2; f'(7) = 5 y que g(10) = 7; g'(10) = 9. Encuentre $(f \circ g)'(10)$.

- F. Ninguna de las anteriores.
- 15. (3 puntos) Utilice la técnica de diferenciación implícita para encontrar $\frac{dy}{dx}$ dado que $x^4y^3 + y = 10x$.

A.
$$\frac{dy}{dx} = \sqrt[3]{\frac{10x - y}{x^4}}$$

B.
$$\frac{dy}{dx} = \frac{10}{4x^3 + 1}$$

C.
$$\frac{dy}{dx} = \frac{10 - 4x^3y^3}{3x^4y^2}$$

D.
$$\frac{dy}{dx} = \frac{10 - 4x^3y^3}{3x^4y^2 + 1}$$

- E. Todas las anteriores.
- F. Ninguna de las anteriores.

Parte II. Respuesta Libre

- 16. (a) (6 puntos) Simplifique, $\frac{d}{dx} \left[e^{100x^2+5} \right]$. (b) (6 puntos) Simplifique, $\frac{d}{dx} \left[\cos \left(10x^3 + 2x \right) \right]$.

Solution: The answer to question 6.

17. (a) (3 puntos) Enuncie el teorema de la Media.

Teorema 1 (de la Media).

(b) (8 puntos) Considere la función $f(x) = 4x^2 + 5x + 11$ definida sobre el intervalo [1, 11]. Encuentre todos los valores c en (1,11) que satisfacen la conclusión del teorema de la Media.

Solution: The answer to question 1.

- 18. Considere la función $f(x) = x^3 3x^2 9x + 6$.
 - (a) (6 puntos) Determine los intervalos donde f es creciente.

(b) (6 puntos) Determine los intervalos donde la gráfica de f es cóncava hacia abajo.

(c) (4 puntos) Determine los máximos y mínimos locales de f.

(d) (6 puntos) Haga un dibujo de la gráfica de f.

Solution: The answer to question 3.

(10 puntos) Un agricultor tiene 1250m de tela metálica para cercar una región rectangular adyacente a un río. (No necesita cerrar el lado que da a la orilla del río.) Halle las dimensiones del rectángulo de área máxima. Explique.
Solution: The answer to question 5.
(10 puntos) Una bicicleta roja, que se encuentra a 12 millas al este de una intersección, se acerca a la intersección a razón de 9 millas por hora (m.p.h.). En ese mismo instante, una bicicleta azul, que está a 5 millas al sur de la intersección, se aleja de la intersección a razón de 10 m.p.h. ¿Cuál es la tasa de cambio de la distancia entre las bicicletas en ese momento? ¿está creciendo o decreciendo la distancia entre las bicicletas en ese momento? Explique.
Solution: The answer to question 6.