

Departamento de Matemáticas Facultad de Ciencias Naturales

Recinto de Río Piedras

 $_{\rm 3151}^{\rm MaTE}$

Segundo Examen

9 de noviembre de 2018

	Nombre:		
No.	de estudiante:	Profesor:	Sección:
Ins	trucciones		
Las 1	reglas para esta prueba son las	siguientes:	
1.			problemas) y otra de respuesta libre ay que contestar todas las preguntas.
2.	Para obtener crédito en los eje	ercicios de respuesta libre, debe mo	strar todo su trabajo.
3.	NO SE PERMITE EL USO D	DE CELULARES.	
4.	NO SE PERMITE EL USO I	DE CALCULADORAS.	
5.	NO SE PERMITE EL USO DI INTERRUMPIR A SUS COM		IPADS, IPODS, ETC.) QUE PUEDAN
C	Como prueba de que usted ha le	eído y entendido las instrucciones, fa	avor de firmar en la caja de abajo.
	Firma:		

Página	Puntos posibles	Puntuación obtenida
2	9	
3	9	
4	9	
5	9	
6	9	
7	23	
8	22	
9	20	
Total:	110	

Parte I. Selección Múltiple

1. (3 puntos) La función $s(t) = 4t^2 + 20t + 40$ definida en el intervalo $0 \le t \le 5$, nos da la posición de un objeto moviéndose horizontalmente, donde s está dado en metros y t está dado en segundos. Encuentre la velocidad v(t) y la aceleración a(t) instantáneas del objeto cuando t=3.

A.
$$v(3) = 44 \text{ m/seg}$$
; $a(3) = 8 \text{ m/seg}^2$

D.
$$v(3) = 28 \text{ m/seg}$$
; $a(3) = 8 \text{ m/seg}^2$

B.
$$v(3) = 44 \text{ m/seg}$$
; $a(3) = 16 \text{ m/seg}^2$

C.
$$v(3) = 28 \text{ m/seg}$$
; $a(3) = 28 \text{ m/seg}^2$

2. (3 puntos) Encuentre la pendiente de la curva dada por la relación $\frac{x}{y^2} = 3$ en el punto (48,4).

A.
$$+\frac{1}{24}$$

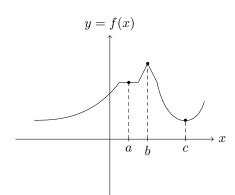
B.
$$-\frac{1}{24}$$

A.
$$+\frac{1}{24}$$
B. $-\frac{1}{24}$
C. $+\frac{48}{16}$

D.
$$-\frac{48}{16}$$

- E. Todas las anteriores.
- F. Ninguna de las anteriores.

3. (3 puntos) Encuentre, en la forma y = mx + b, la ecuación de la recta tangente a la gráfica de $y = 2\operatorname{sen}(x) + 5$, en el punto $(\pi, 5)$.


A.
$$y = -2x + 2\pi + 5$$

D.
$$y = -2x + \frac{\pi}{2} + 5$$

B.
$$y = 2x + 2\pi + 5$$

C.
$$y = 2x - \frac{\pi}{2} + 5$$

4. (3 puntos) Encuentre la tabla que mejor describe la gráfica a continuación.

	\boldsymbol{x}	f'(x)
Λ	a	0
Α.	b	0
	c	no existe

	x	f'(x)	
C	a	no existe	
C .	b	0	
	c	no existe	

B.
$$\begin{array}{c|cc} x & f'(x) \\ \hline a & 0 \\ b & \text{no existe} \\ c & 0 \\ \end{array}$$

D.
$$\begin{array}{c|cc} x & f'(x) \\ \hline a & \text{no existe} \\ b & \text{no existe} \\ c & 0 \\ \hline \end{array}$$

5. (3 puntos) La posición de un objeto moviéndose sobre una recta está dada por $s(t)=t^2-24t+45$, donde s está dado en metros y t está dado en segundos. ¿Cuándo, si alguna vez, durante el intervalo de tiempo $0 \le t \le 17$ el objeto cambia de dirección?

A.
$$t = 3 \text{ seg.}$$

D.
$$t = 15 \text{ seg.}$$

B.
$$t = 6 \text{ seg.}$$

C.
$$t = 12 \text{ seg.}$$

- F. Ninguna de las anteriores.
- 6. (3 puntos) Encuentre y'' dado que $y = e^{7x+1}$.

A.
$$y'' = e^{7x+1}$$

D.
$$y'' = \frac{e^{7x+1}}{49}$$

B.
$$y'' = 7e^{7x+1}$$

C.
$$y'' = 49e^{7x+1}$$

7. (3 puntos) Dada la función $f(x) = 4x + \frac{20}{x}$ definida en el intervalo [1,5]. Encuentre todos los valores c en el intervalo (1,5) tales que

$$f'(c) = \frac{f(5) - f(1)}{5 - 1}.$$

A.
$$c = +\sqrt{5}$$

C.
$$c = +4, +\sqrt{5}$$

A.
$$c = +\sqrt{5}$$
 C. $c = +4, +\sqrt{5}$ B. $c = -\sqrt{5}, +\sqrt{5}$ D. $c = +4$

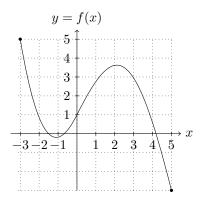
D.
$$c = +4$$

F. Ninguna de las anteriores.

8. (3 puntos) Encuentre $\frac{dr}{d\theta}$ dado que $r = 2\cos(5\theta) + 10$.

A.
$$\frac{dq}{d\theta} = -10 \operatorname{sen}(5\theta)$$
 C. $\frac{dq}{d\theta} = -10 \operatorname{sen}(\theta)$ B. $\frac{dq}{d\theta} = 10 \operatorname{sen}(5\theta)$ D. $\frac{dq}{d\theta} = -2 \operatorname{sen}(5\theta)$

C.
$$\frac{dq}{d\theta} = -10\operatorname{sen}(\theta)$$


B.
$$\frac{dq}{d\theta} = 10 \operatorname{sen}(5\theta)$$

D.
$$\frac{dq}{d\theta} = -2\operatorname{sen}(5\theta)$$

F. Ninguna de las anteriores.

- 9. (3 puntos) Considere la función $g(x) = x^2 + 2x + 11$ definida en el intervalo [-2, 3]. Encuentre, si alguno, los máximos y mínimos absolutos de g en el intervalo dado.
 - A. el máximo absoluto es 26 en x=3; el mínimo absoluto es 10 en x=-1
 - B. el máximo absoluto es 26 en x=3; el mínimo absoluto es 11 en x=-2
 - C. el máximo absoluto es 11 en x=-2; el mínimo absoluto es 10 en x=-1
 - D. el máximo absoluto es 3 en x = 3; el mínimo absoluto es -2 en x = -2
 - E. Todas las anteriores.
 - F. Ninguna de las anteriores.

- 10. (3 puntos) Utilice la técnica de diferenciación implícita para encontrar $\frac{dy}{dx}$ dado que $xy^2 + 1 = x$.
 - A. $\frac{dy}{dx} = \sqrt{\frac{x-1}{x}}$
 - B. $\frac{dy}{dx} = \frac{1+y^2}{2xy}$
 - C. $\frac{dy}{dx} = \frac{1 y^2}{2xy}$
 - D. $\frac{dy}{dx} = \frac{1}{2xy}$
 - E. Todas las anteriores.
 - F. Ninguna de las anteriores.
- 11. (3 puntos) Considere la siguiente gráfica de y=f(x), donde $-3 \le x \le 5$. Indique los valores de x en donde la función alcanza un mínimo <u>absoluto</u>, si alguno.

- A. x = -3
- B. x = -1
- C. x = +2

- D. x = +5
- E. Todas las anteriores.
- F. No hay máximo absoluto.
- 12. (3 puntos) La suma de dos números reales no-negativos es 15. ¿Cuáles son esos dos números si el producto del <u>cuadrado</u> de uno de ellos con el otro es máximo?
 - A. Los números son: $\frac{45}{6}$, $\frac{45}{6}$
 - B. Los números son: $\frac{48}{6}$, $\frac{42}{6}$
 - C. Los números son: 10,5
 - D. Los números son: 9,6
 - E. Todas las anteriores.
 - F. Ninguna de las anteriores.

- 13. (3 puntos) Suponga que f, g son diferenciables para todo número real, que f(2) = 13; f'(2) = 12 y que g(5) = 2; g'(5) = 10. Encuentre $(f \circ g)'(5)$.
 - A. 10
 - B. 12
 - C. 13

- D. 120
- E. Todas las anteriores.
- F. Ninguna de las anteriores.

- 14. (3 puntos) La derivada de cierta función f(x) es f'(x) = (x-2)(x-4)(x-6). Encuentre los valores de x en donde la función f(x) alcanza valores mínimos locales.
 - A. x = 2, 4, 6
 - B. x = -2, -4, -6
 - C. x = 2, 4
 - D. x = 2, 6
 - E. x = 4
 - F. Ninguna de las anteriores.

- 15. (3 puntos) Dado que $f(x) = 2x^2 + 2x 1$ y que $x_0 = 1$. Utilice el método de Newton para aproximar las raíces de f(x) = 0 hasta encontrar el segundo estimado x_2 .
 - A. $x_2 = \frac{1}{2}$
 - B. $x_2 = \frac{1}{8}$
 - C. $x_2 = \frac{2}{8}$

- D. $x_2 = \frac{3}{8}$
- E. Todas las anteriores.
- F. Ninguna de las anteriores.

Parte II. Respuesta Libre

- 16. (a) (6 puntos) Simplifique, $\frac{d}{dx} [\ln(\text{sen}(x) + 10)]$. (b) (6 puntos) Simplifique, $\frac{d}{dx} [e^{\tan(x)}]$.

17. (a) (3 puntos) Enuncie el teorema de Rolle.

(b) (8 puntos) Considere la función $f(x) = (x-1)^2(x-5)^3$ definida sobre el intervalo [1,5]. Encuentre todos los valores c en (1,5) que satisfacen la conclusión del teorema de Rolle.

- 18. Considere la función $f(x) = x^3 12x^2 + 45x 50$.
 - (a) (6 puntos) Determine los intervalos donde f es creciente.

(b) (6 puntos) Determine los intervalos donde la gráfica de f es cóncava hacia abajo.

(c) (4 puntos) Determine los máximos y mínimos locales de f.

(d) (6 puntos) Haga un dibujo de la gráfica de f.

19.	(10 puntos) La altura de cierto triángulo disminuye a razón de 3 cm/min mientras que el área del mismo disminuye a razón de 7 cm 2 /min. ¿A qué ritmo cambia la base del triángulo cuando la altura es igual a 30 cm y el área es de 180 cm 2 ? Explique.
20	(10 puntos) Un fabricante de tanques de metal quiere construir un tanque en forma de caja retangular
20.	sin tapa, de base cuadrada y cuyo volumen sea 27 pies ³ . ¿Cuáles son las dimensiones del tanque de menor área superficial que tenga las especificaciones mencionadas? Explique.