

Departamento de Matemáticas Facultad de Ciencias Naturales

Recinto de Río Piedras

 $_{\rm 3151}^{\rm MATE}$

Segundo Examen

17 de octubre de 2012

	Nombre:		
No. de estu	diante:	Profesor:	Sección:
$\mathbf{Instruc}$	ciones		
Las reglas p	oara esta prueba son las s	iguientes:	
-	· -	- \	problemas) y otra de respuesta libre ay que contestar todas las preguntas.
2. Para	obtener crédito en los eje	rcicios de respuesta libre, debe mo	strar todo su trabajo.
3. NO S	E PERMITE EL USO D	E CELULARES.	
4. NO S	E PERMITE EL USO D	E CALCULADORAS.	
	E PERMITE EL USO DE RRUMPIR A SUS COM		IPADS, IPODS, ETC.) QUE PUEDAN
Como p	rueba de que usted ha leí	do y entendido las instrucciones, f	avor de firmar en la caja de abajo.
	Firma:		
	R	un L ^A T _E X again to produce the tab	ole

Parte I. Selección Múltiple

1. (3 puntos) Dado que,
$$y = \frac{1}{13x^2} + \frac{1}{7x}$$
. Encuentre y' .

A.
$$y' = -\frac{2}{13x} - \frac{1}{7x^2}$$

D.
$$y' = \frac{2}{13x^3} + \frac{1}{7x^2}$$

B.
$$y' = -\frac{1}{13x^3} + \frac{1}{7x^2}$$

C.
$$y' = -\frac{2}{13x^3} - \frac{1}{7x^2}$$

2. (3 puntos) Encuentre la segunda derivada de
$$s = \frac{7t^3}{3} + 7$$
.

A.
$$s'' = 7t$$

D.
$$s'' = 7t^2$$

B.
$$s'' = 14t + 7$$

C.
$$s'' = 14t$$

3. (3 puntos) Encuentre la derivada de la función
$$y = \frac{x^3}{x-1}$$

A.
$$y' = \frac{-2x^3 + 3x^2}{(x-1)^2}$$

B.
$$y' = \frac{2x^3 - 3x^2}{(x-1)^2}$$

C.
$$y' = \frac{-2x^3 - 3x^2}{(x-1)^2}$$

D.
$$y' = \frac{2x^3 + 3x^2}{(x-1)^2}$$

E. Todas las anteriores.

F. Ninguna de las anteriores.

A.
$$-44$$

C.
$$-56$$

^{4. (3} puntos) Suponga que u=u(x) y w=w(x) son funciones diferenciables para todo número real x. Además, suponga que u(2)=10, u'(2)=3, w(2)=-2, w'(2)=-5. Encuentre $\frac{d}{dx}\left(u(x)\cdot w(x)\right)$ cuando x=2.

F. Ninguna de las anteriores.

5. (3 puntos) La función $s(t) = 9t - t^2$ nos da la posición de un objeto moviéndose horizontalmente, donde s está dado en metros, t está dado en segundos y $0 \le t \le 9$. Encuentre el desplazamiento y la velocidad promedio del objeto para t en intervalo que va desde t=0 hasta t=9.

A. desp. = 0 m; vel. prom. = 0 m/sec

D. desp. = 162 m; vel. prom. = 18 m/sec

B. desp. = -162 m; vel. prom. = -18 m/sec E. Todas las anteriores.

C. desp. = 162 m; vel. prom. = -9 m/sec

F. Ninguna de las anteriores.

6. (3 puntos) Considere los valores de f, g, f', g' en los puntos x = 3 y x = 4 según la tabla. Encuentre H'(3) dado que $H(x) = (f(x))^2 \cdot g(x)$.

x	f(x)	g(x)	f'(x)	g'(x)
3	1	16	8	5
4	3	3	5	-6

A.
$$H'(3) = 37$$

D.
$$H'(3) = 261$$

B.
$$H'(3) = 80$$

C.
$$H'(3) = 133$$

- F. Ninguna de las anteriores.
- 7. (3 puntos) Encuentre la derivada de la función

$$y = \frac{7}{\operatorname{sen}(x)} + \frac{1}{\cot(x)}.$$

A.
$$y' = 7\cos(x) - \csc^2(x)$$

D.
$$y' = 7\csc(x)\cot(x) - \sec^2(x)$$

B.
$$y' = -7\csc(x)\cot(x) + \sec^2(x)$$

C.
$$y' = 7\csc(x)\cot(x) - \csc^2(x)$$

F. Ninguna de las anteriores.

8. (3 puntos) Encuentre y'' dado que $y = -4\cos(x)$.

A.
$$y'' = -4\cos(x)$$

D.
$$y'' = -4 \operatorname{sen}(x)$$

B.
$$y'' = 4\cos(x)$$

C.
$$y'' = 4 sen(x)$$

- 9. (3 puntos) Encuentre $\frac{dy}{dt}$ dado que $y = (1 + \sin(10t))^{-4}$.
 - A. $\frac{dy}{dt} = -4(1 + \sin(10t))^{-5}\cos(10t)$ D. $\frac{dy}{dt} = -40(\cos(10t))^{-5}$

B. $\frac{dy}{dt} = -4(1 + \sin(10t))^{-5}$

- E. Todas las anteriores.
- C. $\frac{dy}{dt} = -40(1 + \sin(10t))^{-5}\cos(10t)$
- F. Ninguna de las anteriores.
- 10. (3 puntos) Utilice la técnica de diferenciación implícita para encontrar $\frac{dy}{dx}$ dado que xy + x = 2.

A.
$$\frac{dy}{dx} = -\frac{1+x}{y}$$

B.
$$\frac{dy}{dx} = -\frac{1+y}{x}$$

C.
$$\frac{dy}{dx} = \frac{1+y}{x}$$

D.
$$\frac{dy}{dx} = \frac{1+x}{y}$$

- E. Todas las anteriores.
- F. Ninguna de las anteriores.
- 11. (3 puntos) Dado que, $y = \left(\frac{3}{x} + x\right) \cdot \left(\frac{3}{x} x\right)$. Encuentre y'.

A.
$$y' = -\frac{18}{x} + 2x$$

B.
$$y' = -\frac{9}{x^3} - 2x$$

C.
$$y' = \frac{18}{x^3} + 2x$$

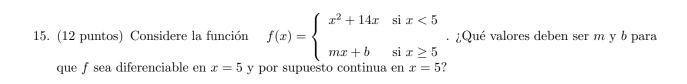
D.
$$y' = -\frac{18}{x^3} - 2x$$

- E. Todas las anteriores.
- F. Ninguna de las anteriores.
- 12. (3 puntos) La energía cinética K de un objeto con masa m y velocidad v está dada por la fórmula $K = \frac{1}{2}mv^2$. Exprese $\frac{dm}{dt}$ en términos de $\frac{dv}{dt}$, asumiendo que K es una constante.

A.
$$\frac{dm}{dt} = -\frac{2m}{v} \frac{dv}{dt}$$

D.
$$\frac{dv}{dt} = -\frac{2m}{v} \frac{dm}{dt}$$

B.
$$\frac{dm}{dt} = -2mv^3 \frac{dv}{dt}$$
C.
$$\frac{dm}{dt} = \frac{m}{v} \frac{dv}{dt}$$


C.
$$\frac{dm}{dt} = \frac{m}{v} \frac{dv}{dt}$$

Parte II. Respuesta Libre

13. (12 puntos) Suponga que $F(x) = \cos(x)$. Utilizando la definición de derivada y la fórmula $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$, verifique que $F'(x) = -\sin(x)$.

- 14. (Problema de Avalúo.) Un proyectil, cuyo movimiento es vertical, está a $s(t) = -16t^2 + 224t + 1920$ pies sobre el suelo luego de t segundos de haber sido lanzado.
 - (a) (6 puntos) ¿Cuándo es la velocidad instantánea del proyectil igual a cero?

(b) (6 puntos) ¿Cuál es la altura máxima del proyectil?

- 16. (a) (6 puntos) Simplifique, $\frac{d}{dx} \left[\sec \left(\sqrt{x} \right) \right]$. (b) (6 puntos) Simplifique, $\frac{d}{dx} \left[\cos \left(x^4 + \tan(x) \right) \right]$.

17. (12 puntos) Simplifique,

$$\frac{d^2}{dx^2} \left[\frac{d}{dx} \left(10x + 4x^2 \right) \cdot \left(x^4 + 5 \right) \right].$$

18. (12 puntos) Dos barcos, uno viniendo desde el norte (la Niña) y el otro viniendo desde el este (la Pinta), se están acercando a una pequeña isla. La Niña está navegando a 20 m.p.h. y la Pinta está navegando a 15 m.p.h.. En cierto momento la Pinta está a 30 millas de la isla y la Niña está a 40 millas de la isla. ¿Cuán rápido está cambiando la distancia entre los dos barcos en ese momento? Explique.