

Departamento de Matemáticas & Ciencia de Cómputos

Facultad de Ciencias Naturales Recinto de Río Piedras

Apellidos:	Nombre:
No. de estudiante:	Profesor:
MATE 3151 Examen-II:	25 de junio de 2002 # de sección

Para obtener crédito muestre todo su trabajo. Explique claramente su contestación.

1. (24 puntos) Encuentre cada una de las siguientes derivadas (No Simplifique).

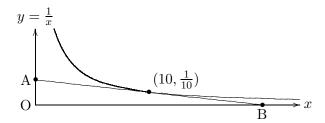
(a)
$$\frac{d}{dx} \left[\tan(x) \cdot (x^2 + 7x^{10}) \right] =$$

(b)
$$\frac{d}{dx} \left[\frac{10x^2 - 7x}{x^4 + 1} \right] =$$

(c)
$$\frac{d}{dx} \left[\frac{6}{x^3 - x} \right] =$$

(d)
$$\frac{d}{dx} \left[\frac{1}{\sqrt[7]{\sin^4(x) + 1}} \right] =$$

2. $(8 \ puntos)$ Sea f(x) una función cuyas primeras tres derivadas existen. El polinomio definido por


$$P(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3$$

es conocido como el polinomio de Taylor de grado tres para f. Encuentre el polinomio de Taylor de grado tres para la función f(x) = sen(x).

- 3. (8 puntos)
 - (a) Encuentre una función F(x) de modo que $F'(x) = x^7 + 10x + 1$.

(b) Encuentre una función G(x) de modo que $G'(x) = \sec^2(x) + 2(x^3 - 2)(3x^2)$.

4. (10 puntos) En la figura, la recta que pasa a través de los puntos A y B es precisamente la recta tangente a la curva de $y=\frac{1}{x}$ en el punto $(10,\frac{1}{10})$. Encuentre el área del triángulo $\triangle AOB$.

- 5. (12 puntos) Un proyectil, cuyo movimiento es vertical, está a $y(t) = -16t^2 + 160t + 336$ pies sobre el suelo luego de t segundos de haber sido lanzado.
 - (a) ¿Cuándo es la velocidad instantánea del proyectil igual a cero?

(b) ¿Cuál es la altura máxima del proyectil?

(c) Encuentre el valor de t para el cual $y'(t) = \frac{y(3) - y(0)}{3 - 0}$.

6. (12 puntos) Encuentre $\frac{dy}{dx}$ y la ecuación de la recta tangente a la curva determinada por la relación

$$y^3 + xy^2 - x = 11$$

en el punto (1,2). (**Nota.** Dé su contestación en la forma y=mx+b).

$$\frac{dy}{dx} =$$

y =

7. (10 puntos) Una bicicleta roja, que se encuentra a 4 millas al este de una intersección, se acerca a la intersección a razón de 9 millas por hora (m.p.h.). En ese mismo instante, una bicicleta azul, que está a 3 millas al sur de la intersección, se aleja de la intersección a razón de 10 m.p.h.. ¿Cuál es la tasa de cambio de la distancia entre las bicicletas en ese momento? ¿está creciendo o decreciendo la distancia entre las bicicletas en ese momento?

- 8. (16 puntos) Considere la función $f(x) = (x-1)^2(x+5)^2$.
 - (a) Expanda la expresión para simplificar a f(x).

(b) Encuentre f'(x).

(c) Utilice la regla del producto, antes de simplificar, para encontrar a f'(x).

(d) Determine los valores para los cuáles f'(x) = 0.